Divergent evolution in enolase superfamily: strategies for assigning functions.

نویسندگان

  • John A Gerlt
  • Patricia C Babbitt
  • Matthew P Jacobson
  • Steven C Almo
چکیده

Nature's strategies for evolving catalytic functions can be deciphered from the information contained in the rapidly expanding protein sequence databases. However, the functions of many proteins in the protein sequence and structure databases are either uncertain (too divergent to assign function based on homology) or unknown (no homologs), thereby limiting the utility of the databases. The mechanistically diverse enolase superfamily is a paradigm for understanding the structural bases for evolution of enzymatic function. We describe strategies for assigning functions to members of the enolase superfamily that should be applicable to other superfamilies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divergent evolution in the enolase superfamily: the interplay of mechanism and specificity.

The members of the mechanistically diverse enolase superfamily catalyze different overall reactions. Each shares a partial reaction in which an active site base abstracts the alpha-proton of the carboxylate substrate to generate an enolate anion intermediate that is stabilized by coordination to the essential Mg(2+) ion; the intermediates are then directed to different products in the different...

متن کامل

The enolase superfamily: a general strategy for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids.

We have discovered a superfamily of enzymes related by their ability to catalyze the abstraction of the alpha-proton of a carboxylic acid to form an enolic intermediate. Although each reaction catalyzed by these enzymes is initiated by this common step, their overall reactions (including racemization, beta-elimination of water, beta-elimination of ammonia, and cycloisomerization) as well as the...

متن کامل

Stability for function trade-offs in the enolase superfamily "catalytic module".

Enzyme catalysis reflects a dynamic interplay between charged and polar active site residues that facilitate function, stabilize transition states, and maintain overall protein stability. Previous studies show that substituting neutral for charged residues in the active site often significantly stabilizes a protein, suggesting a stability trade-off for functionality. In the enolase superfamily,...

متن کامل

The structural determination of phosphosulfolactate synthase from Methanococcus jannaschii at 1.7-A resolution: an enolase that is not an enolase.

Members of the enolase mechanistically diverse superfamily catalyze a wide variety of chemical reactions that are related by a common mechanistic feature, the abstraction of a proton adjacent to a carboxylate group. Recent investigations into the function and mechanism of the phosphosulfolactate synthase encoded by the ComA gene in Methanococcus jannaschii have suggested that ComA, which cataly...

متن کامل

Evolution of enzymatic activities in the enolase superfamily: crystal structures of the L-Ala-D/L-Glu epimerases from Escherichia coli and Bacillus subtilis.

The members of the enolase superfamily catalyze different overall reactions, yet share a partial reaction that involves Mg(2+)-assisted enolization of the substrate carboxylate anion. The fate of the resulting enolate intermediate is determined by the active site of each enzyme. Several members of this superfamily have been structurally characterized to permit an understanding of the evolutiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 1  شماره 

صفحات  -

تاریخ انتشار 2012